常见的数学符号及写法图片(常见的数学符号)

导读 大家好,乐乐来为大家解答以下的问题,关于常见的数学符号及写法图片,常见的数学符号这个很多人还不知道,那么今天让乐乐带着大家一起来看看...

大家好,乐乐来为大家解答以下的问题,关于常见的数学符号及写法图片,常见的数学符号这个很多人还不知道,那么今天让乐乐带着大家一起来看看吧!

1、1 几何符号⊥ ‖ ∠ ⌒ ⊙ ≡ ≌ △2 代数符号∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶3运算符号× ÷ √ ±4集合符号∪ ∩ ∈5特殊符号∑ π(圆周率)6推理符号|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ← ↑ → ↓ ↖ ↗ ↘ ↙ ‖ ∧ ∨&; §① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩Γ Δ Θ ∧ Ξ Ο ∏ ∑ Φ Χ Ψ Ωα β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ‖ ∧ ∨ ∩ ∪ ∫ ∮∴ ∵ ∶ ∷ ∽ ≈ ≌ ≈ ≠ ≡ ≤ ≥ ≤ ≥ ≮ ≯ ⊕ ⊙ ⊥⊿ ⌒ ℃指数0123:º¹²³符号 意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪ 集合并∩ 集合交≥ 大于等于≤ 小于等于≡ 恒等于或同余ln(x) 自然对数lg(x) 以2为底的对数log(x) 常用对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数{x} 小数部分 x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分[P] P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况 如:∑[n is prime][n < 10]f(n) ∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm⊥n m与n互质a ∈ A a属于集合A#A 集合A中的元素个数∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和, 如果f(n)是有结构式,f(n)应外引括号; ∑(n=p,q ; r=s,t)f(n,r) 表示 ∑(r=s,t)[∑(n=p,q)f(n,r)], 如果f(n。

2、r)是有结构式,f(n,r)应外引括号; ∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积, 如果f(n)是有结构式。

3、f(n)应外引括号; ∏(n=p,q ; r=s,t)f(n,r) 表示 ∏(r=s,t)[∏(n=p,q)f(n,r)], 如果f(n,r)是有结构式,f(n。

4、r)应外引括号; lim(x→u)f(x) 表示 f(x) 的 x 趋向 u 时的极限, 如果f(x)是有结构式,f(x)应外引括号; lim(y→v ; x→u)f(x,y) 表示 lim(y→v)[lim(x→u)f(x,y)], 如果f(x,y)是有结构式。

5、f(x,y)应外引括号; ∫(a,b)f(x)dx 表示对 f(x) 从 x=a 至 x=b 的积分, 如果f(x)是有结构式,f(x)应外引括号; ∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy, 如果f(x。

6、y)是有结构式,f(x,y)应外引括号; ∫(L)f(x,y)ds 表示 f(x,y) 在曲线 L 上的积分, 如果f(x。

7、y)是有结构式,f(x,y)应外引括号; ∫∫(D)f(x,y,z)dσ 表示 f(x,y,z) 在曲面 D 上的积分, 如果f(x。

8、y,z)是有结构式,f(x。

9、y,z)应外引括号; ∮(L)f(x,y)ds 表示 f(x,y) 在闭曲线 L 上的积分, 如果f(x,y)是有结构式。

10、f(x,y)应外引括号; ∮∮(D)f(x,y,z)dσ 表示 f(x,y,z) 在闭曲面 D 上的积分, 如果f(x,y)是有结构式。

11、f(x,y)应外引括号; ∪(n=p,q)A(n) 表示n从p到q之A(n)的并集, 如果A(n)是有结构式。

12、A(n)应外引括号; ∪(n=p,q ; r=s,t)A(n,r) 表示 ∪(r=s,t)[∪(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n。

13、r)应外引括号; ∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集, 如果A(n)是有结构式,A(n)应外引括号; ∩(n=p,q ; r=s,t)A(n,r) 表示 ∩(r=s,t)[∩(n=p,q)A(n,r)], 如果A(n,r)是有结构式。

14、A(n,r)应外引括号;。

本文分享到此完毕,希望对您有所帮助。

免责声明:本文由用户上传,如有侵权请联系删除!